
Warp® CPLD Development Tool for UNIX

CY3125

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
Document #: 38-03046 Rev. *A Revised January 9, 2002

5

Features
• VHDL (IEEE 1076 and 1164) and Verilog (IEEE 1364)

high-level language compilers with the following
features:
— Designs are portable across multiple devices

and/or EDA environments

— Facilitates the use of industry-standard simulation
and synthesis tools for board and system-level
design

— Support for functions and libraries facilitating
modular design methodology

• IEEE Standard 1076 and 1164 VHDL synthesis
supports:
— Enumerated types

— Operator overloading

— For... Generate statements

— Integers
• IEEE Standard 1364 Verilog synthesis supports:

— Reduction and conditional operators

— Blocking and non-blocking procedural assignments

— While loops

— Integers
• Several design entry methods support high-level and

low-level design descriptions:
— Behavioral VHDL and Verilog (IF...THEN...ELSE;

CASE...)

— Boolean

— Structural Verilog and VHDL

— Designs can include multiple entry methods (but
only one HDL language) in a single design.

• UltraGen™ Synthesis and Fitting Technology:
— Infers “modules” such as adders, comparators, etc.,

from behavioral descriptions and replaces them with
circuits pre-optimized for the target device.

— User-selectable speed and/or area optimization on a
block-by-block basis

— Perfect communication between synthesis and fit-
ting

— Automatic selection of optimal flip-flop type
(D type/T type)

— Automatic pin assignment
• Supports for the following Cypress Programmable

Logic Devices:
— PSI™ (Programmable Serial Interface™)

— Delta39K™ CPLDs

— Quantum38K™ CPLDs

— Ultra37000™ CPLDs

— FLASH370i™ CPLDs

— MAX340™ CPLDs

— Industry-standard PLDs (16V8, 20V8, 22V10)
• VHDL and Verilog timing model output for use with

third-party simulators
• Static Timing Report:

— Provides timing information for any path broken
down by the different steps of the path

• Architecture Explorer and Dynamic Timing Analysis for
PSI, Delta39K and Quantum38K devices:
— Graphical representation of exactly how your design

will be implemented on your specific target device

— Zoom from the device level down to the macrocell
level

— Determine the timing for any path and view that path
on a graphical representation of the chip

• Workstation support for Sun Solaris™
• On-line documentation and help

Functional Description

Warp® is a state-of-the-art HDL compiler for designing with
Cypress’s Complex Programmable Logic Devices (CPLDs).
Warp utilizes a subset of IEEE 1076/1164 VHDL and IEEE
1364 Verilog as its Hardware Description Languages (HDL) for
design entry. Then, it synthesizes and optimizes the entered
design, and outputs a JEDEC or Intel hex file for the desired
PLD or CPLD (see Figure 1). Furthermore, Warp accepts
VHDL or Verilog produced by the Active-HDL FSM graphical
Finite State Machine editor. For simulation, Warp provides a
timing simulator, as well as VHDL and Verilog timing models
for use with third party simulators.

Figure 1. Warp® VHDL Design Flow

D
E

S
IG

N
E

N
T

R
Y

C
O

M
P

IL
A

T
IO

N

State MachineVHDL

Programming Timing
Simulator

VHDL, Verilog
&Third-Party

Simulation Models

V
E

R
F

IC
A

T
IO

N

UltraGenTM

Synthesis
and

Fitting

Verilog

File

CY3125

Document #: 38-03046 Rev. *A Page 2 of 8

VHDL and Verilog Compilers

VHDL and Verilog are powerful, industry standard languages
for behavioral design entry and simulation, and are supported
by all major vendors of EDA tools. They allow designers to
learn a single language that is useful for all facets of the design
process.

VHDL and Verilog offer designers the ability to describe de-
signs at many different levels. At the highest level, designs can
be entered as a description of their behavior. This behavioral
description is not tied to any specific target device. As a result,
simulation can be done very early in the design to verify correct
functionality, which significantly speeds the design process.

The Warp syntax for VHDL and Verilog includes support for
intermediate level entry modes such as state tables and Bool-
ean entry. At the lowest level, designs can be described using
gate-level descriptions. Warp gives the designer the flexibility
to intermix all of these entry modes.

In addition, Verilog and VHDL allow you to design hierarchical-
ly, building up entities in terms of other entities. This allows you
to work either “top-down” (designing the highest levels of the
system and its interfaces first, then progressing to greater and
greater detail) or “bottom-up” (designing elementary building
blocks of the system, then combining these to build larger and
larger parts) with equal ease.

Because these languages are IEEE standards, multiple ven-
dors offer tools for design entry and simulation at both high and
low levels and synthesis of designs to different silicon targets.
The use of device-independent behavioral design entry gives
users the freedom to easily migrate to high-volume technolo-
gies. The wide availability of VHDL and Verilog tools provides
complete vendor independence as well. Designers can begin
their project using Warp for Cypress CPLDs and convert to
high volume ASICs using the same VHDL or Verilog behav-
ioral description with industry-standard synthesis tools.

The VHDL and Verilog languages also allow users to define
their own functions. User-defined functions allow users to ex-
tend the capabilities of the language and build reusable files of
tested routines. VHDL and Verilog provide control over the tim-
ing of events or processes. They have constructs that identify
processes as either sequential, concurrent, or a combination
of both. This is essential when describing the interaction of
complex state machines.

VHDL and Verilog are rich programming languages. Their flex-
ibility reflects the nature of modern digital systems and allows
designers to create accurate models of digital designs. Be-
cause they are not verbose languages they are easy to learn
and compile. In addition, models created in VHDL and Verilog
can readily be transported to other EDA Environments. Warp
supports IEEE 1076/1164 VHDL including loops, for/gener-
ate statements, full hierarchical designs with packages, enu-
merated types, and integers as well as IEEE 1364 Verilog
including loops, reduction and conditional operators.

A VHDL Design Example

Design Entry

Warp descriptions specify:
• The behavior or structure of a design, and
• The mapping of signals in a design to the pins of a

PLD/CPLD (optional)

The part of a Warp description that specifies the behavior or
structure of the design is called an entity/architecture pair.
Entity/architecture pairs, as their name implies, are divided
into two parts: an entity declaration, which declares the
design’s interface signals (i.e., defines what external signals
the design has, and what their directions and types are), and
a design architecture, which describes the design’s behavior
or structure.

The entity portion of a design file is a declaration of what a
design presents to the outside world (the interface). For each
external signal, the entity declaration specifies a signal name,
a direction and a data type. In addition, the entity declaration
specifies a name by which the entity can be referenced in a
design architecture. This section shows code segments from
five sample design files. The top portion of each example
features the entity declaration.

Behavioral Description

The architecture portion of a design file specifies the function
of the design. As shown in Figure 1, multiple design-entry
methods are supported in Warp. A behavioral description
in VHDL often includes well known constructs such as
If...Then...Else, and Case statements. Here is a code
segment from a simple state machine design (soda
vending machine) that uses behavioral VHDL to implement
the design:

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY drink IS
PORT (nickel,dime,quarter,clock:#in

std_logic;
returnDime,returnNickel,giveDrink:out

std_logic);
END drink;

ARCHITECTURE fsm OF drink IS

TYPE drinkState IS (zero,five,ten,fifteen,
twenty,twentyfive,owedime);
SIGNAL drinkstatus:drinkState;

BEGIN

PROCESS BEGIN

WAIT UNTIL clock = ’1’;

giveDrink <= ’0’;
returnDime <= ’0’;
returnNickel <= ’0’;

CASE drinkStatus IS

WHEN zero =>
IF (nickel = ’1’) THEN
drinkStatus <= five;

ELSIF (dime = ’1’) THEN
drinkStatus <= Ten;

 ELSIF (quarter = ’1’) THEN
drinkStatus <= twentyfive;

END IF;
WHEN five =>

CY3125

Document #: 38-03046 Rev. *A Page 3 of 8

IF (nickel = ’1’) THEN
drinkStatus <= ten;

ELSIF (dime = ’1’) THEN
drinkStatus <= fifteen;

ELSIF (quarter = ’1’) THEN
giveDrink <= ’1’;
drinkStatus <= zero

END IF;

-- Several states are omitted in this
-- example. The omitted states are ten,
-- fifteen, twenty, and twentyfive.

WHEN owedime =>
returnDime <= ’1’;
drinkStatus <= zero;

when others =>
-- This makes sure that the state
-- machine resets itself if
-- it somehow gets into an undefined state.

drinkStatus <= zero;
END CASE;
END PROCESS;

END FSM;

VHDL is a strongly typed language. It comes with several
predefined operators, such as + and /= (add, not-equal-to).
VHDL offers the capability of defining multiple meanings for
operators (such as +), which results in simplification of the
code written. For example, the following code segment shows
that “count <= count +1” can be written such that count is a
std_logic_vector, and 1 is an integer.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.std_arith.all;

ENTITY sequence IS
port (clk: in std_logic;

s : inout std_logic);
end sequence;

ARCHITECTURE fsm OF sequence IS

SIGNAL count: std_logic_vector(3 downto 0);

BEGIN

PROCESS BEGIN

WAIT UNTIL clk = ’1’;

CASE count IS

WHEN x“0” | x“1” | x“2” | x“3” =>
s <= ’1’;
count <= count + 1;

WHEN x“4” | x“5” | x“6” | x“7” =>
s <= ’0’;
count <= count + 1;

WHEN x“8” | x“9” =>
s <= ’1’;
count <= count + 1;

WHEN others =>

s <= ’0’;
count <= (others => ’0’);

END CASE;

END PROCESS;

END FSM;

In this example, the + operator is overloaded to accept both
integer and std_logic arguments. Warp supports overloading
of operators.

Functions

A major advantage of VHDL is the ability to implement func-
tions. The support of functions allows designs to be reused by
simply specifying a function and passing the appropriate
parameters. Warp features some built-in functions such as
ttf (truth-table function). The ttf function is particularly
useful for state machine or look-up table designs. The
following code describes a seven-segment display decoder
implemented with the ttf function:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.table_std.all;

ENTITY seg7 IS
PORT(
inputs: IN STD_LOGIC_VECTOR (0 to 3)
outputs: OUT STD_LOGIC_VECTOR (0 to 6)

);
END SEG7;

ARCHITECTURE mixed OF seg7 IS

CONSTANT truthTable:
ttf_table (0 to 11, 0 to 10) := (

-- input& output
-- -----------------------
”0000”& ”0111111”,
”0001”& ”0000110”,
”0010”& ”1011011”,
”0011”& ”1001111”,
”0100”& ”1100110”,
”0101”& ”1101101”,
”0110”& ”1111101”,
”0111”& ”0000111”,
”1000”& ”1111111”,
”1001”& ”1101111”,
”101-”& ”1111100”, --creates E pattern
”111-”& ”1111100”
);

BEGIN

outputs <= ttf(truthTable,inputs);

END mixed;

Boolean Equations

A third design-entry method available to Warp users is Boolean
equations. Figure 2 displays a schematic of a simple one-bit half
adder. The following code describes how this one-bit half adder can
be implemented in Warp with Boolean equations:

CY3125

Document #: 38-03046 Rev. *A Page 4 of 8

LIBRARY ieee;
USE ieee.std_logic_1164.all;

--entity declaration
ENTITY half_adder IS

PORT (x, y : IN std_logic;
sum, carry : OUT std_logic);

END half_adder;
--architecture body
ARCHITECTURE behave OF half_adder IS
BEGIN

sum <= x XOR y;
carry <= x AND y;

END behave;

Structural VHDL

While all of the design methodologies described thus far are
high-level entry methods, structural VHDL provides a method
for designing at a very low level. In structural descriptions, the
designer simply lists the components that make up the design
and specifies how the components are wired together. Figure
3 displays the schematic of a simple 3-bit shift register and the
following code shows how this design can be described in Warp
using structural VHDL:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.rtlpkg.all;

ENTITY shifter3 IS port (
clk : IN STD_LOGIC;
x : IN STD_LOGIC;
q0 : OUT STD_LOGIC;
q1 : OUT STD_LOGIC;
q2 : OUT STD_LOGIC);

END shifter3;

ARCHITECTURE struct OF shifter3 IS
SIGNAL q0_temp, q1_temp, q2_temp : STD_LOGIC;
BEGIN

d1 : DFF PORT MAP(x,clk,q0_temp);
d2 : DFF PORT MAP(q0_temp,clk,q1_temp);
d3 : DFF PORT MAP(q1_temp,clk,q2_temp);
q0 <= q0_temp;
q1 <= q1_temp;
q2 <= q2_temp;

END struct;

All of the design-entry methods described can be mixed as
desired. VHDL has the ability to combine both high- and
low-level entry methods in a single file. The flexibility and
power of VHDL allows users of Warp to describe designs using
whatever method is appropriate for their particular design.

A Verilog Design Example

Design Entry

Warp descriptions specify:

• The behavior or structure of a design, and
• the mapping of signals in a design to the pins of a PLD/CPLD

(optional)
The part of a Warp description that specifies the behavior or
structure of the design is called a module. The module de-
clares the design’s interface signals (i.e., defines what exter-
nal signals the design has, and what their directions and
types are).

The module portion of a design file is a declaration of what a
design presents to the outside world (the interface). For each
external signal, the module specifies a signal name, a direction
and a data type. In addition, the module declaration specifies
a name by which the entity can be referenced in other
modules. This section shows code segments from four sample
design files. The top portion of each example features the
module declaration.

Behavioral Description

The module portion of a design file specifies the function of the
design. As shown in Figure 1, multiple design-entry methods
are supported in Warp. A behavioral description in Verilog
often includes well known constructs such as If…Else, and
Case statements. Here is a code segment from a simple
state machine design (soda vending machine) that uses
behavioral Verilog to implement the design:

MODULE drink (nickel, dime, quarter, clock,
returnDime, returnNickel,
giveDrink);

INPUT nickel, dime, quarter, clock;
OUTPUT returnDime,returnNickel,giveDrink;
REG returnDime, returnNickel, giveDrink;

PARAMETER zero = 0, five = 1, ten = 2,
fifteen = 3, twenty = 4, twentyfive = 5
owedime = 6;

REG[1:0] drinkStatus;

ALWAYS@ (POSEDGE clock)

Figure 2. One-Bit Half Adder

x
y

carry

sum

2

Figure 3. Three-Bit Shift Register Circuit Design

clk

d q

clk

d q

clk

d qx

clk

q0 q1 q2

CY3125

Document #: 38-03046 Rev. *A Page 5 of 8

BEGIN

giveDrink = 0;
returnDime = 0;
returnNickel = 0;

CASE(drinkStatus)

zero: BEGIN
 IF (nickel)

drinkStatus = five;
 ELSE IF (dime)

drinkStatus = ten;
ELSE IF (quarter)

drinkStatus = twentyfive;
END

five: BEGIN
 IF (nickel)

drinkStatus = ten;
 ELSE IF (dime)

drinkStatus = fifteen;
ELSE IF (quarter)

BEGIN
drinkStatus = zero;
giveDrink = 1;

END

END

// Several states are omitted in this
// example. The omitted states are ten
// fifteen, twenty, and twentyfive.

owedime: BEGIN
returnDime = 1;
drinkStatus = zero;

END

default: BEGIN
// This makes sure that the state
// machine resets itself if
// it somehow gets into an undefined state.

drinkStatus = zero;
END

ENDCASE
END
ENDMODULE

Verilog is not a strongly typed language. The simplicity and
readability of the following code is increased by use of the
CASEX. The CASEX command accepts “Don’t Cares” and
chooses the branch depending on the value of the expression.

MODULE sequence (clk, s);
INPUT clk;
INOUT s;
WIRE s;
REG temp;
REG[3:0] count;

ALWAYS@(POSEDGE clk)
CASEX(count)

4’b00XX: BEGIN
temp=1;
count=count+1;
end

4’b01XX: BEGIN
temp=0;
count=count+1;
end

4’b100X: BEGIN
temp=1;
count=count+1;
end

default: BEGIN
temp=0;
count=0;
end

ENDCASE
ASSIGN s=temp;
ENDMODULE

Boolean Equations

A second design-entry method available to Warp Verilog users
is Boolean equations. Figure 4 displays a schematic of a simple
one-bit half adder. The following code describes how this one-bit half
adder can be implemented in Warp with Boolean equations:

MODULE half_adder(x, y, sum, carry);
INPUT x, y;
OUTPUT sum, carry;

ASSIGN sum = x^y;
ASSIGN carry = x&y;
ENDMODULE

Structural Verilog

While all of the design methodologies described thus far are
high-level entry methods, structural Verilog provides a method
for designing at a very low level. In structural descriptions, the
designer simply lists the components that make up the design
and specifies how the components are wired together.
Figure 5 displays the schematic of a simple 3-bit shift register and
the following code shows how this design can be described in
Warp using structural Verilog.

MODULE shifter3 (clk, x, q0, q1, q2);
INPUT clk, x;
OUTPUT q0, q1, q2;
WIRE q0, q1, q2;
REG q0_temp, q1_temp, q2_temp;

DFF d1(x,clk,q0_temp);
DFF d2(q0_temp,clk,q1_temp);
DFF d3(q1_temp,clk,q2_temp);
ASSIGN q0 = q0_temp;
ASSIGN q1 = q1_temp;
ASSIGN q2 = q2_temp;

ENDMODULE;

Figure 4. One-Bit Half Adder

x
y

Carry

Sum

CY3125

Document #: 38-03046 Rev. *A Page 6 of 8

All of the design-entry methods described can be mixed as
desired. Verilog has the ability to combine both high- and
low-level entry methods in a single file. The flexibility and
power of Verilog allows users of Warp to describe designs using
whatever method is appropriate for their particular design.

Compilation
Once the VHDL or Verilog description of the design is com-
plete, it is compiled using Warp. Although implementation is with
a single command, compilation is actually a multistep process as
shown in Figure 1. The first part of the compilation process is the
same for all devices. The input description is synthesized to a logical
representation of the design. Warp synthesis is unique in that the
input languages support device-independent design descriptions.
Competing programmable logic compilers require very specific and
device-dependent information in the design description.

Warp synthesis is based on UltraGen technology. This tech-
nology allows Warp to infer adders, subtractors, multipliers,
comparators, counters and shifters from the behavioral de-
scriptions. Warp then replaces these operators internally with
an architecture-specific circuit. This circuit or “module” is also
pre-optimized for either area or speed. Warp uses the appro-
priate implementation based on user directives.

The second step of compilation is an iterative process of opti-
mizing the design and fitting the logic into the targeted device.
Logical optimization in Warp is accomplished using Espresso al-
gorithms. The optimized design is automatically fed to the Warp
fitter for targeting a PLD or CPLD. This fitter supports the automatic
or manual placement of pin assignments as well as automatic
selection of D or T flip-flops. After optimization and fitting, Warp cre-
ates a JEDEC or Intel hex file for the specified PLD or CPLD.

Automatic Error Tracking
Warp features automatic error location that allows problems to
be diagnosed and corrected in seconds. Errors from compila-
tion are displayed immediately in a window. If the user high-
lights a particular error, Warp will automatically open the

source code file and highlight the offending line in the entered
design. If the device fitting process includes errors, a window
will again describe them. A detailed report file is generated
indicating the resources required to fit the input design and any
problems that occurred in the process.

Simulation
Warp outputs standard VHDL and Verilog timing models that
can be used with third-party simulators to perform functional
and timing verifications of the synthesized design.

Architecture Explorer
The Architecture Explorer graphically displays how the design
will be implemented on the chip. It provides a view of the entire
device to show what memory elements and logic clusters have
been used for what part of the design. This gives the designer
an idea of what resources are free. The Architecture Explorer
allows you to zoom in multiple times. At maximum zoom it dis-
plays the logic gate implementation in each macrocell. The
Architecture Explorer is available for PSI, Delta39K and
Quantum38K devices.

Timing Analyzer
The Timing Analyzer gives the time across any path as well as
the breakdown of what steps are causing the timing delays.
This tool does not simply display the general specification for
the target device but a worst-case simulation of the actual path
being taken through the device. When you highlight a path on
the timing analyzer, the source and destination of that path are
displayed on the Architecture Explorer. The timing analyzer is
also available for PSI™, Delta39K™ and Quantum38K™ de-
vices.

Programming
Cypress’s FLASH370i, Ultra37000, Quantum38K, Delta39K,
and PSI In-System Reprogrammable™ (ISR™) devices can
be programmed on board with an ISR programmer. For PSI,
Delta39K and Quantum38K CPLDs Warp produces an Intel
hex file. The ISR programmer converts this file into STAPL and
programs the device. For Ultra37000 and FLASH370i devices,
Warp produces a JEDEC file. For Ultra37000, the ISR pro-
grammer converts this file into JAM/STAPL and programs the
device. For FLASH370i, the JEDEC file is used directly to pro-
gram the device.

The JEDEC and Intel hex files produced by Warp can also be
used with any qualified third party programmer to program Cy-
press CPLDs.

For more information on Cypress’s ISR software see the ISR
Programming Kit (CY3900i) data sheet.

Figure 5. Three-Bit Shift Register Circuit Design

clk

d q

clk

d q

clk

d qx

clk

q0 q1 q2

CY3125

Document #: 38-03046 Rev. *A Page 7 of 8
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

System Requirements
• 32 MB of RAM (64 MB recommended)
• 110 MB Disk Space
• CD-ROM drive
• Solaris 2.5 or later

Product Ordering Information

Warp includes:
• CD-ROM with Warp and on-line documentation (Getting

Started Manual, User’s Guide, HDL Reference Manual)
• VHDL for Programmable Logic Textbook
• Registration Card

Warp Enterprise, UltraGen, Ultra37000, Quantum38K, Delta39K, PSI, Programmable Serial Interface, MAX340, ISR, In-System
Reprogrammable, and FLASH370i are trademarks of Cypress Semiconductor Corporation.
Warp is a registered trademark of Cypress Semiconductor Corporation.
Solaris is a trademark of Sun Microsystems Corporation.
Active-HDL is a trademark of Aldec Incorporated.

Product Code Description

CY3125R62 Warp development system for UNIX

CY3125

Document #: 38-03046 Rev. *A Page 8 of 8

Document Title: CY3125 Warp® CPLD Development Tool for UNIX
Document Number: 38-03046

REV. ECN NO.
Issue
Date

Orig. of
Change Description of Change

** 109903 09/22/01 SZV Change from Spec number: 38-01033 to 38-03046

*A 111243 01/22/02 CNH Update product code

		2008-12-13T18:35:45-0800
	ch

